LOGO

Study of the role of CCAP neurons of the ecdysial behavorial sequence through mathematical and computational methods / Miguel Piñeiro Feick.

Por: Colaborador(es): Tipo de material: TextoTextoEditor: Valparaíso : Universidad de Valparaíso, 2018Descripción: 67 hojasTipo de contenido:
  • text
Tipo de medio:
  • unmediated
Tipo de soporte:
  • volume
Tema(s): Otra clasificación:
  • M
Nota de disertación: Doctor en Ciencias mención en Neurociencias. Resumen: Animal behavior arises from the interplay between neural, biomechanical and environmental dynamics. Neuromodulators, such as neuropeptides can regulate and reconfigure neural circuits to alter their output, affecting in this way animal behavior. How neuromodulators act on neural circuits to produce distinct behaviors is still poorly understood. Here I studied the peptidergic circuits that orchestrates the ecdysis behavioral sequence in Drosophila. This behavioral sequence has three phases: pre-ecdysis, ecdysis and post-ecdysis. The sequence is initiated by the release of ecdysis-triggering hormone (ETH) which activates multiple neuronal targets of which crustacean cardioactive peptide (CCAP) neurons have been identified as key for the successful execution of the behavioral sequence. How CCAP neurons regulate the behavioral sequence is still not clear, but studies of Manduca have showed that CCAP can initiate the ecdysial motor activity. I used calcium imaging data (from CCAP neurons only, and from CCAP neurons together with motoneurons), behavioral data from pupal ecdysis, and mathematical and computational approaches to study the dynamics and functional connectivity between CCAP neurons and motoneurons, and how they relate to the behavior. I found that CCAP neurons tightly regulate the motoneuronal activity during the ecdysis and post-ecdysis phases, consistent with the recent identification of CCAP targets. The behavioral analysis showed that while the three major phases of the ecdysis sequence can be detected in the motoneuronal recordings, motoneurons have major differences in the timing and regularity of their activity. Moreover, I found that the post-ecdysis phase has two subphases which appear to be absent in the motoneuro nal recordings. These results give us new insights into the peptidergic regulation of motor programs and behaviors.
Valoración
    Valoración media: 0.0 (0 votos)
Existencias
Tipo de ítem Biblioteca actual Colección Signatura topográfica Estado Fecha de vencimiento Código de barras Reserva de ítems
Tesis  Postgrado Tesis Postgrado Ciencias Tesis Tesis M P661s 2018 Disponible 00413958
Total de reservas: 0

Doctor en Ciencias mención en Neurociencias.

Animal behavior arises from the interplay between neural, biomechanical and environmental dynamics. Neuromodulators, such as neuropeptides can regulate and reconfigure neural circuits to alter their output, affecting in this way animal behavior. How neuromodulators act on neural circuits to produce distinct behaviors is still poorly understood. Here I studied the peptidergic circuits that orchestrates the ecdysis behavioral sequence in Drosophila. This behavioral sequence has three phases: pre-ecdysis, ecdysis and post-ecdysis. The sequence is initiated by the release of ecdysis-triggering hormone (ETH) which activates multiple neuronal targets of which crustacean cardioactive peptide (CCAP) neurons have been identified as key for the successful execution of the behavioral sequence. How CCAP neurons regulate the behavioral sequence is still not clear, but studies of Manduca have showed that CCAP can initiate the ecdysial motor activity. I used calcium imaging data (from CCAP neurons only, and from CCAP neurons together with motoneurons), behavioral data from pupal ecdysis, and mathematical and computational approaches to study the dynamics and functional connectivity between CCAP neurons and motoneurons, and how they relate to the behavior. I found that CCAP neurons tightly regulate the motoneuronal activity during the ecdysis and post-ecdysis phases, consistent with the recent identification of CCAP targets. The behavioral analysis showed that while the three major phases of the ecdysis sequence can be detected in the motoneuronal recordings, motoneurons have major differences in the timing and regularity of their activity. Moreover, I found that the post-ecdysis phase has two subphases which appear to be absent in the motoneuro nal recordings. These results give us new insights into the peptidergic regulation of motor programs and behaviors.

Dirección de Bibliotecas y Recursos para el Aprendizaje

Universidad de Valparaíso

Normativas

  • Blanco 951, Valparaíso, Chile.

  • 56-32-2603246

  • Política de privacidad